Cellular therapies using regulatory T (Treg) cells are currently undergoing clinical trials for the treatment of autoimmune diseases, transplant rejection and graft-versus-host disease. In this Review, we discuss the biology of Treg cells and describe new efforts in Treg cell engineering to enhance specificity, stability, functional activity, and delivery. Finally, we envision that the success of Treg cell therapy in autoimmunity and transplantation will encourage the clinical use of adoptive Treg cell therapy for non-immune diseases, such as neurological disorders and tissue repair.
Publications
Our team has decades of industry-leading experience and published works in the fields of Treg biology, cell therapy, and immune tolerance.
Please peruse this curated collection of published works.
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases.
Regulatory T cells (Treg cells) represent a CD4+ T-cell lineage that plays a critical role in restraining immune responses to self and foreign antigens and associated inflammation. Due to the suppressive function of Treg cells, inhibition or ablation of these cells can be used to boost the immunity against malignant cells.
Forkhead box P3-expressing regulatory T (Treg) cells are essential for self-tolerance, with an emerging role in tissue repair and regeneration. Their ability to traffic to tissue and perform complex therapeutic tasks in response to the tissue microenvironment make them an attractive candidate for drug development.